Answer:
[tex]\{T(v_1), T(v_2), T(v_3)\}[/tex] is linearly dependent set.
Step-by-step explanation:
Given: [tex]\{v_1,v_2,v_3\}[/tex] is a linearly dependent set in set of real numbers R
To show: the set [tex]\{T(v_1), T(v_2), T(v_3)\}[/tex] is linearly dependent.
Solution:
If [tex]\{v_1,v_2,v_3,...,v_n\}[/tex] is a set of linearly dependent vectors then there exists atleast one [tex]k_i:i=1,2,3,...,n[/tex] such that [tex]k_1v_1+k_2v_2+k_3v_3+...+k_nv_n=0[/tex]
Consider [tex]k_1T(v_1)+k_2T(v_2)+k_3T(v_3)=0[/tex]
A linear transformation T: U→V satisfies the following properties:
1. [tex]T(u_1+u_2)=T(u_1)+T(u_2)[/tex]
2. [tex]T(au)=aT(u)[/tex]
Here, [tex]u,u_1,u_2[/tex]∈ U
As T is a linear transformation,
[tex]k_1T(v_1)+k_2T(v_2)+k_3T(v_3)=0\\T(k_1v_1)+T(k_2v_2)+T(k_3v_3)=0\\T(k_1v_1+k_2v_2+k_3v_3)=0\\[/tex]
As [tex]\{v_1,v_2,v_3\}[/tex] is a linearly dependent set,
[tex]k_1v_1+k_2v_2+k_3v_3=0[/tex] for some [tex]k_i\neq 0:i=1,2,3[/tex]
So, for some [tex]k_i\neq 0:i=1,2,3[/tex]
[tex]k_1T(v_1)+k_2T(v_2)+k_3T(v_3)=0[/tex]
Therefore, set [tex]\{T(v_1), T(v_2), T(v_3)\}[/tex] is linearly dependent.