Respuesta :
Answer:
The maximum possible error of in measurement of the angle is [tex]d\theta_1 =(14.36p)^o[/tex]
Step-by-step explanation:
From the question we are told that
The angle of elevation is [tex]\theta_1 = 15 ^o = \frac{\pi}{12}[/tex]
The height of the tree is h
The distance from the base is D
h is mathematically represented as
[tex]h = D tan \theta[/tex] Note : this evaluated using SOHCAHTOA i,e
[tex]tan\theta = \frac{h}{D}[/tex]
Generally for small angles the series approximation of [tex]tan \theta \ is[/tex]
[tex]tan \theta = \theta + \frac{\theta ^3 }{3}[/tex]
So given that [tex]\theta = 15 \ which \ is \ small[/tex]
[tex]h = D (\theta + \frac{\theta^3}{3} )[/tex]
[tex]dh = D (1 + \theta^2) d\theta[/tex]
=> [tex]\frac{dh}{h} = \frac{1 + \theta ^2}{\theta + \frac{\theta^3}{3} } d \theta[/tex]
Now from the question the relative error of height should be at most
[tex]\pm p[/tex]%
=> [tex]\frac{dh}{h} = \pm p[/tex]
=> [tex]\frac{1 + \theta ^2}{\theta + \frac{\theta^3}{3} } d \theta = \pm p[/tex]
=> [tex]d\theta = \pm \frac{\theta + \frac{\theta^3}{3} }{1+ \theta ^2} * \ p[/tex]
So for [tex]\theta_1[/tex]
[tex]d\theta_1 = \pm \frac{\theta_1 + \frac{\theta^3_1 }{3} }{1+ \theta_1 ^2} * \ p[/tex]
substituting values
[tex]d [\frac{\pi}{12} ] = \pm \frac{[\frac{\pi}{12} ] + \frac{[\frac{\pi}{12} ]^3 }{3} }{1+ [\frac{\pi}{12} ] ^2} * \ p[/tex]
=> [tex]d\theta_1 = 0.25 p[/tex]
Converting to degree
[tex]d\theta_1 = (0.25* 57.29) p[/tex]
[tex]d\theta_1 =(14.36p)^o[/tex]