Answer:
The average temperature is [tex]T_{a} = 81.95^oC[/tex]
Step-by-step explanation:
From the question we are told that
The temperature of the coffee after time t is [tex]T(t) = 25 + 72 e^{[-\frac{t}{45} ]}[/tex]
Now the average temperature during the first 22 minutes i.e fro [tex]0 \to 22[/tex]minutes is mathematically evaluated as
[tex]T_{a} = \frac{1}{22-0} \int\limits^{22}_{0} {25 +72 e^{[-\frac{t}{45} ]}} \, dx[/tex]
[tex]T_{a} = \frac{1}{22} [25 t + 72 [\frac{e^{[-\frac{t}{45} ]}}{-\frac{1}{45} } ] ] \left| 22} \atop {0}} \right.[/tex]
[tex]T_{a} = \frac{1}{22} [25 t - 3240e^{[-\frac{t}{45} ]} ] \left | 45} \atop {{0}} \right.[/tex]
[tex]T_{a} = \frac{1}{22} [25 (22) - 3240e^{[-\frac{22}{45} ]} - (- 3240e^{0} )][/tex]
[tex]T_{a} = \frac{1}{22} [550 - 1987.12 + 3240][/tex]
[tex]T_{a} = 81.95^oC[/tex]