Answer:
See Prove
Step-by-step explanation:
Given the expression: [tex]\dfrac{x^3-x^2}{x} -(x-1)(x+1)[/tex]
To Prove: [tex]\dfrac{x^3-x^2}{x} -(x-1)(x+1)=1-x[/tex]
Taking the Left-Hand side
[tex]\dfrac{x^3-x^2}{x} -(x-1)(x+1)\\=\dfrac{x(x^2-x)}{x} -[x(x+1)-1(x+1)]\\=x^2-x-[x^2+x-x-1]\\=x^2-x-x^2+1\\=-x+1\\=1-x[/tex]
This is the right-hand side as required.
We have proved the given algebraic identity.