Answer:
a) [tex]\mu_{\bar X}= 129[/tex]
[tex]\sigma_{\bar X}= \frac{7}{\sqrt{8}}=2.475[/tex]
b) If the distribution is normal then the sampling distribution would be bell shaped and normal
c) [tex] P(\bar X >140)[/tex]
And we can use the z score formula given by:
[tex] z =\frac{\bar X -\mu}{\sigma_{\bar X}}[/tex]
And replacing we got:
[tex] z =\frac{140-129}{2.475}= 4.44[/tex]
And then we can find the probability using the complement rule and the normal standard distribution or excel and we got:
[tex] P(\bar X>140) = P(Z>4.44) =1-P(z<4.44) \approx 0[/tex]
Step-by-step explanation:
For this case we have the following info:
[tex]n=8[/tex] represent the sample size
[tex] \bar X=129[/tex] the sample mean
[tex] s=7[/tex] the standard deviation
Part a
If we assume that the distirbution is bell shaped then we can find the parameters like this:
[tex]\mu_{\bar X}= 129[/tex]
[tex]\sigma_{\bar X}= \frac{7}{\sqrt{8}}=2.475[/tex]
Part b
If the distribution is normal then the sampling distribution would be bell shaped and normal
Part c
We want this probability:
[tex] P(\bar X >140)[/tex]
And we can use the z score formula given by:
[tex] z =\frac{\bar X -\mu}{\sigma_{\bar X}}[/tex]
And replacing we got:
[tex] z =\frac{140-129}{2.475}= 4.44[/tex]
And then we can find the probability using the complement rule and the normal standard distribution or excel and we got:
[tex] P(\bar X>140) = P(Z>4.44) =1-P(z<4.44) \approx 0[/tex]