Respuesta :
Answer:
Percentile 5
[tex]z=-1.64<\frac{a-24.2}{2.6}[/tex]
And if we solve for a we got
[tex]a=24.2 -1.64*2.6=19.94[/tex]
Percentile 95
[tex]z=1.64<\frac{a-24.2}{2.6}[/tex]
And if we solve for a we got
[tex]a=24.2 +1.64*2.6=28.46[/tex]
Step-by-step explanation:
Let X the random variable that represent the variable of interest of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(24.2,2.6)[/tex]
Where [tex]\mu=24.2[/tex] and [tex]\sigma=2.6[/tex]
We want to find the percentiles 5 and 95 for this case.
Percentile 5
For this part we want to find a value a, such that we satisfy this condition:
[tex]P(X>a)=0.95[/tex] (a)
[tex]P(X<a)=0.05[/tex] (b)
We want to find a percentile with 0.95 of the area on the left and 0.05 of the area on the right it's z=-1.64. On this case P(Z<-1.64)=0.05 and P(z>-1.64)=0.05
Using this condition we got:
[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.05[/tex]
[tex]P(z<\frac{a-\mu}{\sigma})=0.05[/tex]
Replacing we got:
[tex]z=-1.64<\frac{a-24.2}{2.6}[/tex]
And if we solve for a we got
[tex]a=24.2 -1.64*2.6=19.94[/tex]
Percentile 95
[tex]z=1.64<\frac{a-24.2}{2.6}[/tex]
And if we solve for a we got
[tex]a=24.2 +1.64*2.6=28.46[/tex]