Respuesta :
Answer:
1.49 x [tex]10^{11}[/tex]
Explanation:
Kepler's third law states that The square of the orbital period of a planet is directly proportional to the cube of its orbit.
Mathematically, this can be stated as
[tex]T^{2}[/tex] ∝ [tex]R^{3}[/tex]
to remove the proportionality sign we introduce a constant
[tex]T^{2}[/tex] = k[tex]R^{3}[/tex]
k = [tex]\frac{T^{2} }{R^{3} }[/tex]
Where T is the orbital period,
and R is the orbit around the sun.
For mars,
T = 687 days
R = 2.279 x [tex]10^{11}[/tex]
for mars, constant k will be
k = [tex]\frac{687^{2} }{(2.279*10^{11}) ^{3} }[/tex] = 3.987 x [tex]10^{-29}[/tex]
For Earth, orbital period T is 365 days, therefore
[tex]365^{2}[/tex] = 3.987 x [tex]10^{-29}[/tex] x [tex]R^{3}[/tex]
[tex]R^{3}[/tex] = 3.34 x [tex]10^{33}[/tex]
R = 1.49 x [tex]10^{11}[/tex]