what is the following quotient,
sqrt96/ sqrt8

Answer:
The answer is option 1.
Step-by-step explanation:
Firstly, you have to get rid of square root at the denorminator by multiply both side with √8 :
[tex] \sqrt{a} \times \sqrt{b} = \sqrt{a \times b} [/tex]
[tex] \sqrt{a} \times \sqrt{a} = a[/tex]
[tex] \frac{ \sqrt{96} }{ \sqrt{8} } [/tex]
[tex] \frac{ \sqrt{96} }{ \sqrt{8} } \times \frac{ \sqrt{8} }{ \sqrt{8} } [/tex]
[tex] \frac{ \sqrt{96} \times \sqrt{8} }{ \sqrt{8} \times \sqrt{8} } [/tex]
[tex] \frac{ \sqrt{768} }{8} [/tex]
Next, you have to simply by looking which factor is a perfect square :
[tex] \frac{ \sqrt{256 \times 3} }{8} [/tex]
[tex] \frac{16 \sqrt{3} }{8} [/tex]
[tex]2 \sqrt{3} [/tex]