Answer:
a) 20.29N
b) 19.43N
c) 15N
Explanation:
To find the magnitude of the resultant vectors you first calculate the components of the vector for the angle in between them, next, you sum the x and y component, and finally, you calculate the magnitude.
In all these calculations you can asume that one of the vectors coincides with the x-axis.
a)
[tex]F_R=(9cos(30\°)+12)\hat{i}+(9sin(30\°))\hat{j}\\\\F_R=(19.79N)\hat{i}+(4.5N)\hat{j}\\\\|F_R|=\sqrt{(19.79N)^2+(4.5N)^2}=20.29N[/tex]
b)
[tex]F_R=(9cos(45\°)+12)\hat{i}+(9sin(45\°))\hat{j}\\\\F_R=(18.36N)\hat{i}+(6.36N)\hat{j}\\\\|F_R|=\sqrt{(18.36N)^2+(6.36N)^2}=19.43N[/tex]
c)
[tex]F_R=(9cos(90\°)+12)\hat{i}+(9sin(90\°))\hat{j}\\\\F_R=(12N)\hat{i}+(9N)\hat{j}\\\\|F_R|=\sqrt{(12N)^2+(9N)^2}=15N[/tex]