Calcular el módulo del vector resultante de dos vectores fuerza de 9 [N] y 12 [N] concurrentes en un punto o, cuyas direcciones forman un ángulo de a) 30˚ b) 45˚ y c) 90˚

Respuesta :

Answer:

a) 20.29N

b) 19.43N

c) 15N

Explanation:

To find the magnitude of the resultant vectors you first calculate the components of the vector for the angle in between them, next, you sum the x and y component, and finally, you calculate the magnitude.

In all these calculations you can asume that one of the vectors coincides with the x-axis.

a)

[tex]F_R=(9cos(30\°)+12)\hat{i}+(9sin(30\°))\hat{j}\\\\F_R=(19.79N)\hat{i}+(4.5N)\hat{j}\\\\|F_R|=\sqrt{(19.79N)^2+(4.5N)^2}=20.29N[/tex]

b)

[tex]F_R=(9cos(45\°)+12)\hat{i}+(9sin(45\°))\hat{j}\\\\F_R=(18.36N)\hat{i}+(6.36N)\hat{j}\\\\|F_R|=\sqrt{(18.36N)^2+(6.36N)^2}=19.43N[/tex]

c)

[tex]F_R=(9cos(90\°)+12)\hat{i}+(9sin(90\°))\hat{j}\\\\F_R=(12N)\hat{i}+(9N)\hat{j}\\\\|F_R|=\sqrt{(12N)^2+(9N)^2}=15N[/tex]