Respuesta :
Answer:
16x -12y = 4
15x +12y = 27
Step-by-step explanation:
4x-3y = 1
5x+4y=9
We will use elimination to remove y from both equations.
We can multiply the first equation by 4
16x -12y = 4
and multiply the second equation by 3
15x +12y = 27
This will eliminate y from the system of equations, leaving only x as a variable.
Answer:
16x - 12y = 4
15x + 12y = 27
Step-by-step explanation:
In order to eliminate the y terms, the equations must be manipulated in order to make the coefficient of the y-term equal 0 when the equations are added.
In this case, we are trying to make one equation with -3y and another equation with 4y result in a single equation with 0y.
We can do this by multiplying the first equation by 4 and the second equation by 3 to result in -12y and 12y. When these are added, the sum is 0y.
4 * (4x - 3y = 1) = 16x - 12y = 4
3 * (5x + 4y = 9) = 15x + 12y = 27
The resulting equations are
16x - 12y = 4
15x + 12y = 27