Respuesta :

Answer:

12(cos120°+isin120°)

Step-by-step explanation:

The rectangular form of a complex number is expressed as z = x+iy

where the modulus |r| = [tex]\sqrt{x^{2}+y^{2}[/tex] and the argument [tex]\theta = tan^{-1}\frac{y}{x}[/tex]

In polar form, x = [tex]rcos\theta \ and\ y = rsin\theta[/tex]

[tex]z = rcos\theta+i(rsin\theta)\\z = r(cos\theta+isin\theta)[/tex]

Given the complex number, [tex]z = -6+6\sqrt{3} i[/tex]. To express in trigonometric form, we need to get the modulus and argument of the complex number.

[tex]r = \sqrt{(-6)^{2}+(6\sqrt{3} )^{2}}\\r = \sqrt{36+(36*3)} \\r = \sqrt{144}\\ r = 12[/tex]

For the argument;

[tex]\theta = tan^{-1} \frac{6\sqrt{3} }{-6} \\\theta = tan^{-1}-\sqrt{3} \\\theta = -60^{0}[/tex]

Since tan is negative in the 2nd and 4th quadrant, in the 2nd quadrant,

[tex]\theta =180-60\\\theta = 120^{0}[/tex]

z = 12(cos120°+isin120°)

This gives the required expression.