Respuesta :
Answer:
[tex]sin\theta_1 = \dfrac{\sqrt{217}}{19}[/tex]
Step-by-step explanation:
It is given that:
[tex]cos\theta_1 = -\dfrac{12}{19}[/tex]
And we have to find the value of [tex]sin\theta_1 = ?[/tex]
As per trigonometric identities, the relation between [tex]sin\theta\ and \ cos\theta[/tex] can represented as:
[tex]sin^2\theta + cos^2\theta = 1[/tex]
Putting [tex]\theta_1[/tex] in place of [tex]\theta[/tex] Because we are given
[tex]sin^2\theta_1 + cos^2\theta_1 = 1[/tex]
Putting value of cosine:
[tex]cos\theta_1 = -\dfrac{12}{19}[/tex]
[tex]sin^2\theta_1 + (\dfrac{12}{19})^2 = 1\\\Rightarrow sin^2\theta_1 + \dfrac{144}{361} = 1\\\Rightarrow sin^2\theta_1 = 1-\dfrac{144}{361}\\\Rightarrow sin^2\theta_1 = \dfrac{361-144}{361}\\\Rightarrow sin^2\theta_1 = \dfrac{217}{361}\\\Rightarrow sin\theta_1 = +\sqrt{\dfrac{217}{361}}, -\sqrt{\dfrac{217}{361}}\\\Rightarrow sin\theta_1 = +\dfrac{\sqrt{217}}{19}, -\dfrac{\sqrt{217}}{19}[/tex]
It is given that [tex]\theta_1[/tex] is in 2nd quadrant and value of sine is always positive in 2nd quadrant. So, the answer is.
[tex]\Rightarrow sin\theta_1 = \dfrac{\sqrt{217}}{19}[/tex]