The angle \theta_1θ
1

theta, start subscript, 1, end subscript is located in Quadrant \text{II}IIstart text, I, I, end text, and \cos(\theta_1)=-\dfrac{12}{19}cos(θ
1

)=−
19
12

cosine, left parenthesis, theta, start subscript, 1, end subscript, right parenthesis, equals, minus, start fraction, 12, divided by, 19, end fraction .
What is the value of \sin(\theta_1)sin(θ
1

)sine, left parenthesis, theta, start subscript, 1, end subscript, right parenthesis?

Respuesta :

Answer:

[tex]sin\theta_1 = \dfrac{\sqrt{217}}{19}[/tex]

Step-by-step explanation:

It is given that:

[tex]cos\theta_1 = -\dfrac{12}{19}[/tex]

And we have to find the value of [tex]sin\theta_1 = ?[/tex]

As per trigonometric identities, the relation between [tex]sin\theta\ and \ cos\theta[/tex] can represented as:

[tex]sin^2\theta + cos^2\theta = 1[/tex]

Putting [tex]\theta_1[/tex] in place of [tex]\theta[/tex] Because we are given

[tex]sin^2\theta_1 + cos^2\theta_1 = 1[/tex]

Putting value of cosine:

[tex]cos\theta_1 = -\dfrac{12}{19}[/tex]

[tex]sin^2\theta_1 + (\dfrac{12}{19})^2 = 1\\\Rightarrow sin^2\theta_1 + \dfrac{144}{361} = 1\\\Rightarrow sin^2\theta_1 = 1-\dfrac{144}{361}\\\Rightarrow sin^2\theta_1 = \dfrac{361-144}{361}\\\Rightarrow sin^2\theta_1 = \dfrac{217}{361}\\\Rightarrow sin\theta_1 = +\sqrt{\dfrac{217}{361}}, -\sqrt{\dfrac{217}{361}}\\\Rightarrow sin\theta_1 = +\dfrac{\sqrt{217}}{19}, -\dfrac{\sqrt{217}}{19}[/tex]

It is given that [tex]\theta_1[/tex] is in 2nd quadrant and value of sine is always positive in 2nd quadrant. So, the answer is.

[tex]\Rightarrow sin\theta_1 = \dfrac{\sqrt{217}}{19}[/tex]

Answer:

−  square root 15/4

Step-by-step explanation: