Respuesta :

Answer:

a) see the attached file

b) Coordinates of vertex = (0, 4)

Step-by-step explanation:

Given:

Focus of parabola is [tex](0,7)[/tex] and the directrix is [tex]y=1[/tex]

To sketch: the parabola

To find: coordinates of the vertex

Solution:

As the focus lies on the y-axis and y-coordinate of the focus is positive,

equation of parabola is [tex](x-h)^2=4p(y-k)[/tex]

Here, [tex](h,k)[/tex] denotes the vertex of parabola, focus is [tex](h,k+p)[/tex] and the directrix is [tex]y=k-p[/tex]

According to question,

[tex](h,k+p)=(0,7)[/tex]

[tex]k-p=1[/tex]

So, [tex]h=0[/tex]

[tex]k+p=7\,,\,k-p=1[/tex]

On adding these equations,

[tex]k+p+k-p=7+1\\2k=8\\k=4[/tex]

Put [tex]k=4[/tex] in [tex]k+p=7[/tex]

[tex]4+p=7\\p=7-4\\p=3[/tex]

So, equation of parabola is [tex](x-0)^2=4(3)(y-4)\Rightarrow x^2=12(y-4)[/tex]

For part a), see the attached file.

b)

Coordinates of vertex = [tex](h,k)=(0,4)[/tex]

Ver imagen berno