Respuesta :
Answer:
A= (0,0) and B = (6,3)
We can find the length AB with the following formula:
[tex] d = \sqrt{(x_B -x_A)^2 +(y_B -y_A)^2}[/tex]
And replacing we got:
[tex] d = \sqrt{(6-0)^2 +(3-0)^2} = \sqrt{45}= 3\sqrt{5}[/tex]
So then the length AB would be [tex] 3\sqrt{5}[/tex]
Step-by-step explanation:
For this case we have the following two points:
A= (0,0) and B = (6,3)
We can find the length AB with the following formula:
[tex] d = \sqrt{(x_B -x_A)^2 +(y_B -y_A)^2}[/tex]
And replacing we got:
[tex] d = \sqrt{(6-0)^2 +(3-0)^2} = \sqrt{45}= 3\sqrt{5}[/tex]
So then the length AB would be [tex] 3\sqrt{5}[/tex]