Respuesta :

Answer:

A= (0,0) and B = (6,3)

We can find the length AB with the following formula:

[tex] d = \sqrt{(x_B -x_A)^2 +(y_B -y_A)^2}[/tex]

And replacing we got:

[tex] d = \sqrt{(6-0)^2 +(3-0)^2} = \sqrt{45}= 3\sqrt{5}[/tex]

So then the length AB would be [tex] 3\sqrt{5}[/tex]

Step-by-step explanation:

For this case we have the following two points:

A= (0,0) and B = (6,3)

We can find the length AB with the following formula:

[tex] d = \sqrt{(x_B -x_A)^2 +(y_B -y_A)^2}[/tex]

And replacing we got:

[tex] d = \sqrt{(6-0)^2 +(3-0)^2} = \sqrt{45}= 3\sqrt{5}[/tex]

So then the length AB would be [tex] 3\sqrt{5}[/tex]

Answer:6.71

Step-by-step explanation: awesomeness