Respuesta :

1.92559524e+14

Step-by-step explanation:

6.47 x 10^-15 and 3.36 x 10^-29 are written in scientific notation. In this way, we have a quotient of two numbers written in scientific notation. To solve this problem, we have:

6.47/3.36 x 10^{[-15-(-29)]}=1.92559524 x 10^{(-15+29)}

Therefore 1.92559524 x 10^{14}  or 1.92559524e+14

Answer:

[tex]=1.9256 E14[/tex]

[tex]\frac{6.47\cdot \:10^{-15}}{3.36\cdot \:10^{-29}}\\\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}\\\frac{10^{-15}}{10^{-29}}=10^{-15-\left(-29\right)}\\=\frac{10^{-15-\left(-29\right)}\cdot \:6.47}{3.36}\\\mathrm{Subtract\:the\:numbers:}\:-15-\left(-29\right)=14\\=\frac{10^{14}\cdot \:6.47}{3.36}\\Convert\:element\:to\:a\:decimal\:form\\10^{14}=1.0E14\\=\frac{1.0E14\cdot \:6.47}{3.36}\\\mathrm{Multiply\:the\:numbers:}\:1.0E14\cdot \:6.47=6.47E14\\=\frac{6.47E14}{3.36}[/tex][tex]\mathrm{Divide\:the\:numbers:}\:\frac{6.47E14}{3.36}=1.9256 E14\\=1.9256 E14[/tex]