Answer:
B. (-7,-3)
Step-by-step explanation:
Given the circle: [tex](x + 7)^2 + (y - 10)^2 = 13^2[/tex]
The point (x,y) which lie on the circle are the coordinate which satisfies the given equation of the circle.
We now consider the given options.
Option A (5,12)
When x=5, y=12
[tex](5 + 7)^2 + (12 - 10)^2 =12^2+2^2=148\neq 169= 13^2[/tex]
Option B (-7,-3)
When x=-7, y=-3
[tex](-7 + 7)^2 + (-3 - 10)^2 =0^2+(-13)^2= 169=13^2[/tex]
Option C (-6,-10)
When x=-6, y=-10
[tex](-6 + 7)^2 + (-10 - 10)^2 =1^2+(-20)^2=401\neq 169= 13^2[/tex]
Option D (6,23)
When x=6, y=23
[tex](6 + 7)^2 + (23 - 10)^2 =13^2+13^2=338\neq 169= 13^2[/tex]
We can see that only (-7,-3) satisfies the equation of the circle. Thus it is the point which lies on the circle.
The correct option is B.