Solve the equation sin sq x = 3cos sq x.

The value of x that satisfies the equation if x lies in the second quadrant is °.

The value of x that satisfies the equation if x lies in the third quadrant is

Respuesta :

Answer:

Second quadrant = 120°.

Third quadrant = 210°

Step-by-step explanation:

We are given that:

[tex]sin^2(x) = 3cos^2(x)[/tex]

The following property is known:

[tex]sin^2(x) +cos^2(x)=1\\[/tex]

Combining both expressions:

[tex]sin^2(x) =1-cos^2(x)\\sin^2(x) = 3cos^2(x)\\\\1-cos^2(x) = 3cos^2(x)\\cos^2(x)=\frac{1}{4}\\cos(x)=\pm \frac{1}{2}[/tex]

If x lies in the second quadrant, then cos(x) = -1/2:

[tex]x=cos^{-1}(1/2)\\x=120^o[/tex]

The value of x that satisfies the equation if x lies in the second quadrant is 120°.

If x lies in the third quadrant, then cos(x) = -1/2:

[tex]x=120+90=210^o[/tex]

The value of x that satisfies the equation if x lies in the third quadrant is  210°

Answer:

The value of x that satisfies the equation if x lies in the second quadrant is 120

The value of x that satisfies the equation if x lies in the third quadrant is

240

Step-by-step explanation:

This is correct for Plato/Edmentum users :) Hope I could help !