Respuesta :
Answer: 6.28 inches.
Step-by-step explanation:
Formula :
i) Area of sector : [tex]A=\dfrac{x}{360}\times\pi r^2,[/tex], where x = central angle and r is radius
ii) Length of arc : [tex]l=\dfrac{x}{360}\times2\pi r[/tex]
Given , r= 6 in.
A = [tex]3\pi[/tex] inches
Put these values in (i) , we get
[tex]3\pi =\dfrac{x}{360}\times\pi (3)^2\\\\\Rightarrow\ 1=\dfrac{x}{120}\\\\\Rightarrow\ x=120^{\circ}[/tex]
Now , put values of x and r in (ii) , we get
[tex]l=\dfrac{120}{360}\times2\pi(3)\\\\\Rightarrow\ l=2\pi = 2(3.14)=6.28\text{ inches}[/tex]
Hence, the length of the arc is 6.28 inches.