Respuesta :
Answer:
(a) [tex]A_1[/tex] and [tex]A_2[/tex] are indeed mutually-exclusive.
(b) [tex]\displaystyle P(A_1\; \cap \; B) = \frac{1}{20}[/tex], whereas [tex]\displaystyle P(A_2\; \cap \; B) = \frac{1}{25}[/tex].
(c) [tex]\displaystyle P(B) = \frac{9}{100}[/tex].
(d) [tex]\displaystyle P(A_1 \; |\; B) \approx \frac{5}{9}[/tex], whereas [tex]P(A_1 \; |\; B) = \displaystyle \frac{4}{9}[/tex]
Step-by-step explanation:
(a)
[tex]P(A_1 \; \cap \; A_2) = 0[/tex] means that it is impossible for events [tex]A_1[/tex] and [tex]A_2[/tex] to happen at the same time. Therefore, event [tex]A_1[/tex] and [tex]A_2[/tex] are mutually-exclusive.
(b)
By the definition of conditional probability:
[tex]\displaystyle P(B \; | \; A_1) = \frac{P(B \; \cap \; A_1)}{P(B)} = \frac{P(A_1 \; \cap \; B)}{P(B)}[/tex].
Rearrange to obtain:
[tex]\displaystyle P(A_1 \; \cap \; B) = P(B \; |\; A_1) \cdot P(A_1) = 0.25 \times 0.20 = \frac{1}{20}[/tex].
Similarly:
[tex]\displaystyle P(A_2 \; \cap \; B) = P(B \; |\; A_2) \cdot P(A_2) = 0.80 \times 0.05 = \frac{1}{25}[/tex].
(c)
Note that:
[tex]\begin{aligned}P(A_1 \; \cup \; A_2) &= P(A_1) + P(A_2) - P(A_1 \; \cap \; A_2) = 0.20 + 0.80 = 1\end{aligned}[/tex].
In other words, [tex]A_1[/tex] and [tex]A_2[/tex] are collectively-exhaustive. Since [tex]A_1[/tex] and [tex]A_2[/tex] are collectively-exhaustive and mutually-exclusive at the same time:
[tex]\displaystyle P(B) = P(B \; \cap \; A_1) + P(B \; \cap \; A_2) = \frac{1}{20} + \frac{1}{25} = \frac{9}{100}[/tex].
(d)
By Bayes' Theorem:
[tex]\begin{aligned} P(A_1 \; |\; B) &= \frac{P(B \; | \; A_1) \cdot P(A_1)}{P(B)} \\ &= \frac{0.25 \times 0.20}{9/100} = \frac{0.05 \times 100}{9} = \frac{5}{9}\end{aligned}[/tex].
Similarly:
[tex]\begin{aligned} P(A_2 \; |\; B) &= \frac{P(B \; | \; A_2) \cdot P(A_2)}{P(B)} \\ &= \frac{0.05 \times 0.80}{9/100} = \frac{0.04 \times 100}{9} = \frac{4}{9}\end{aligned}[/tex].
Using probability concepts, along with conditional probability and Bayes Theorem, it is found that:
a) [tex]P(A1 \cap A2) = 0[/tex], thus yes, A1 and A2 are mutually exclusive.
b) The probabilities are: P(A1 ∩ B) = 0.05, P(A2 ∩ B) = 0.04.
c) The probability of event B is: P(B) = 0.09.
d) The probabilities are: P(A1|B) = 0.5555 and P(A2|B) = 0.4445.
-----------
Conditional Probability
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
- P(B|A) is the probability of event B given that A.
- [tex]P(A \cap B)[/tex] is the probability of both A and B.
- P(A) is the probability of A.
-----------
Bayes Theorem:
[tex]P(B|A) = \frac{P(B)*P(A|B)}{P(A)}[/tex]
-----------
Item a:
- Two events A and B are mutually exclusive if they cannot happen together.
- Since [tex]P(A1 \cap A2) = 0[/tex], yes, it can be said that events A1 and A2 are mutually exclusive.
Item b:
Using conditional probability.
A1 and B:
[tex]P(B|A1) = \frac{P(A1 \cap B)}{P(A1)}[/tex]
[tex]0.25 = \frac{P(A1 \cap B)}{0.2}[/tex]
[tex]P(A1 \cap B) = 0.25(0.2) = 0.05[/tex]
A2 and B:
[tex]P(B|A2) = \frac{P(A2 \cap B)}{P(A2)}[/tex]
[tex]0.05 = \frac{P(A1 \cap B)}{0.8}[/tex]
[tex]P(A1 \cap B) = 0.8(0.05) = 0.04[/tex]
Item c:
P(B) is given by:
[tex]P(B) = P(A1 \cap B) + P(A2 \cap B) = 0.05 + 0.04 = 0.09[/tex]
Item d:
Applying Bayes Theorem
[tex]P(A1|B) = \frac{P(A1)P(B|A1)}{P(B)} = \frac{0.25(0.2)}{0.09} = 0.5555[/tex]
[tex]P(A2|B) = \frac{P(A2)P(B|A2)}{P(B)} = \frac{0.8(0.05)}{9} = 0.4445[/tex]
A similar problem is given at https://brainly.com/question/22428992