Respuesta :
Answer:
A. P = 14x+6
B. A = 12x^2 +9x
C. P = 118; A = 840
Step-by-step explanation:
A. The perimeter is twice the sum of length and width:
P = 2(L +W) = 2((4x+3) +(3x)) = 2(7x +3)
P = 14x +6 . . . . the perimeter of the rectangle
__
B. The area is the product of length and width:
A = LW = (4x +3)(3x)
A = 12x^2 +9x . . . . . the area of the rectangle
__
C. When x = 8, these values are ...
P = 14·8 +6 = 118 . . . . . perimeter in units
A = 12·8^2 +9·8 = 768 +72 = 840 . . . . . area in square units
Answer:
a) [tex] P = 2(4x+3) +2(3x) =8x +6 +6x = 14x +6[/tex]
b) [tex] A= 12x^2 +9x[/tex]
c) [tex] P = 14*8 +6 = 112+6 = 118[/tex]
[tex] A= 12(8)^2 +9*8 = 840[/tex]
Step-by-step explanation:
We know that the length is 4x+3 and the width is of 3x
Part a
For this case the perimeter is given by:
[tex] P = 2(4x+3) +2(3x) =8x +6 +6x = 14x +6[/tex]
Part b
The area is given by:
[tex] A= (4x+3) (3x)[/tex]
And after multiply we got:
[tex] A= 12x^2 +9x[/tex]
Part c
For this case replacing the value of x =8 we got:
[tex] P = 14*8 +6 = 112+6 = 118[/tex]
[tex] A= 12(8)^2 +9*8 = 840[/tex]