Answer:
23 years.
Step-by-step explanation:
It is given that the initial price of painting is $150 and its values increasing by 3% annually.
We need to find how many years will it take until it is doubled in value.
The value of painting after t years is given by
[tex]y=150(1+0.03)^t[/tex]
[tex]y=150(1.03)^t[/tex]
The value of painting after double is 300. Substitute y=300.
[tex]300=150(1.03)^t[/tex]
Divide both sides by 150.
[tex]2=(1.03)^t[/tex]
Taking log both sides.
[tex]\log 2=\log (1.03)^t[/tex]
[tex]\log 2=t\log (1.03)[/tex]
[tex]t=\dfrac{\log 2}{\log (1.03)}[/tex]
[tex]t=23.44977[/tex]
[tex]t\approx 23[/tex]
Therefore, the required number of years is 23.