Answer:
The smallest angle of the triangle is 33.030°.
Step-by-step explanation:
The angles of triangle can be determined with the help of the Law of Cosine and the fact that sum of all angles equals to 180°:
[tex]\cos A = -\frac{6^{2}-9^{2}-11^{2}}{2\cdot (9)\cdot (11)}[/tex]
[tex]\cos A = 0.838[/tex]
[tex]A \approx 33.030^{\circ}[/tex]
[tex]\cos B = -\frac{9^{2}-6^{2}-11^{2}}{2\cdot (6)\cdot (11)}[/tex]
[tex]\cos B = 0.575[/tex]
[tex]B \approx 54.847^{\circ}[/tex]
[tex]C = 180^{\circ} - A - B[/tex]
[tex]C = 180^{\circ} - 33.030^{\circ} - 54.847^{\circ}[/tex]
[tex]C = 92.123^{\circ}[/tex]
The smallest angle of the triangle is 33.030°.