Answer:
∠ A = 31.3°, ∠ C = 58.7°
Step-by-step explanation:
Using the sine ratio in the right triangle
sin A = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{13}{25}[/tex] , thus
∠ A = [tex]sin^{-1}[/tex] ([tex]\frac{13}{25}[/tex] ) ≈ 31.3° ( to the nearest tenth )
The sum of the 3 angles in a triangle = 180° , thus
∠ C = 180° - (90 + 31.3)° = 180° - 121.3° = 58.7°