Respuesta :

Answer:

[tex]2^{\frac{11}{2}}[/tex].

Step-by-step explanation:

We need to write the given expression with prime number base.

In question 7, part d.

The given expression is

[tex]8\sqrt{32}[/tex]

It can be rewritten as

[tex]2^3\sqrt{2^5}[/tex]

Using properties of exponents , we get

[tex]2^3(2^5)^{\frac{1}{2}}[/tex]

[tex]2^3(2^{\frac{5}{2}})[/tex]    [tex][\because \sqrt[n]{x}=x^{\frac{1]{n}}][/tex]

[tex]2^{3+\frac{5}{2}}[/tex]    [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]2^{\frac{6+5}{2}}[/tex]    [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]2^{\frac{11}{2}}[/tex]

Here, base is 2 and it is prime number.

Therefore, the required expression is [tex]2^{\frac{11}{2}}[/tex].