Answer:
a) the co-ordinates of the center are (-3,4) and the length of the radius is 10 units
Center (h,k) = (-3 ,4) and radius 'r' = 10
Step-by-step explanation:
Step(i):-
Given circle equation is
[tex]2 x^{2} +12 x+2 y^{2} -16 y-150 =0[/tex]
Dividing "2' on both sides, we get
[tex]x^{2} +6 x+ y^{2} -8 y-75 =0[/tex]
Step(ii):-
now
[tex]x^{2} +2(3x) + (3)^{2}-(3)^{2} +y^{2} -2 (4 y)+(4)^{2}-(4)^2 -75 =0[/tex]
by using (a+b)² =a²+2 a b+b²
(a-b)² =a²-2 a b+b²
[tex](x+3)^{2}-(3)^{2} +(y-4)^{2}-(4)^2 -75 =0[/tex]
[tex](x+3)^{2}-9 +(y-4)^{2}-16 -75 =0[/tex]
[tex](x+3)^{2} +(y-4)^{2}-100 =0[/tex]
[tex](x+3)^{2} +(y-4)^{2}=100[/tex]
[tex](x+3)^{2} +(y-4)^{2}=(10^2)[/tex]
by comparing
[tex](x-h)^{2} +(y-k)^{2}=(r^2)[/tex]
Final answer:-
Center (h,k) = (-3 ,4) and radius 'r' = 10