Respuesta :

Answer:

a) the co-ordinates of the center are (-3,4) and the length of the radius is 10 units

Center (h,k) = (-3 ,4) and radius 'r' = 10

Step-by-step explanation:

Step(i):-

Given circle equation is

  [tex]2 x^{2} +12 x+2 y^{2} -16 y-150 =0[/tex]

Dividing "2' on both sides, we get

[tex]x^{2} +6 x+ y^{2} -8 y-75 =0[/tex]

Step(ii):-

now

[tex]x^{2} +2(3x) + (3)^{2}-(3)^{2} +y^{2} -2 (4 y)+(4)^{2}-(4)^2 -75 =0[/tex]

by using (a+b)² =a²+2 a b+b²

              (a-b)² =a²-2 a b+b²

[tex](x+3)^{2}-(3)^{2} +(y-4)^{2}-(4)^2 -75 =0[/tex]

[tex](x+3)^{2}-9 +(y-4)^{2}-16 -75 =0[/tex]

[tex](x+3)^{2} +(y-4)^{2}-100 =0[/tex]

[tex](x+3)^{2} +(y-4)^{2}=100[/tex]

[tex](x+3)^{2} +(y-4)^{2}=(10^2)[/tex]

by comparing

[tex](x-h)^{2} +(y-k)^{2}=(r^2)[/tex]

Final answer:-

Center (h,k) = (-3 ,4) and radius 'r' = 10