Respuesta :

Answer:

[tex]=x^3-x^2+3x-3+\frac{4}{x+1}[/tex]

Step-by-step explanation:

[tex]\frac{x^4+2x^2+1}{x+1}\\\mathrm{Divide}\:\frac{x^4+2x^2+1}{x+1}:\quad \frac{x^4+2x^2+1}{x+1}=x^3+\frac{-x^3+2x^2+1}{x+1}\\=x^3+\frac{-x^3+2x^2+1}{x+1}\\\mathrm{Divide}\:\frac{-x^3+2x^2+1}{x+1}:\quad \frac{-x^3+2x^2+1}{x+1}=-x^2+\frac{3x^2+1}{x+1}\\=x^3-x^2+\frac{3x^2+1}{x+1}\\\mathrm{Divide}\:\frac{3x^2+1}{x+1}:\quad \frac{3x^2+1}{x+1}=3x+\frac{-3x+1}{x+1}\\=x^3-x^2+3x+\frac{-3x+1}{x+1}\\\mathrm{Divide}\:\frac{-3x+1}{x+1}:\quad \frac{-3x+1}{x+1}=-3+\frac{4}{x+1}\\=x^3-x^2+3x-3+\frac{4}{x+1}[/tex]