Answer:
slope intercept form y = m x +C
[tex]y = \frac{4x}{3} -\frac{40}{3}[/tex]
Step-by-step explanation:
step(i):-
Given two points are A (7,-4) and B(-1,2)
Slope of two lines formula
[tex]m= \frac{y_{2} -y_{1} }{x_{2} -x_{1} } = \frac{-1-7}{2-(-4)} =\frac{-8}{6} = \frac{4}{3}[/tex]
Step(ii):-
The equation of the straight line passing through the two points
y-y₁ = m(x-x₁)
Let (x₁ , y₁) = (7,-4)
y - (-4) =[tex]\frac{4}{3}[/tex] (x-7)
On cross multiplication , we get
3(y+4) = 4(x-7)
3 y +12 = 4 x -28
subtract '12' on both sides , we get
3 y = 4 x -28 -12
3 y = 4 x - 40
Dividing '3' on both sides, we get
Now slope intercept form y = m x +C
[tex]y = \frac{4x}{3} -\frac{40}{3}[/tex]
Final answer:-
slope intercept form y = m x +C
[tex]y = \frac{4x}{3} -\frac{40}{3}[/tex]