Respuesta :
Answer:
[tex]\eta_{real} = 5.512\,\%[/tex], [tex]\eta_{max} = 6.373\,\%[/tex]. Possible.
Explanation:
The thermal efficiency of the real power cycle is determined by the following expression:
[tex]\eta_{real} = \frac{\dot W}{\dot Q_{H}}\times 100\,\%[/tex]
Where:
[tex]\dot W[/tex] - Power output of the power plant, in kW.
[tex]\dot Q_{H}[/tex] - Heat transfer rate from lake surface level, in kW.
The heat transfer rate from lake surface level is the sum of the heat rejection rate and the power output. That is:
[tex]\dot Q_{H} = \left(14,400\,\frac{kJ}{min} \right)\cdot \left(\frac{1}{60}\,\frac{min}{s} \right) + 14\,kW[/tex]
[tex]\dot Q_{H} = 254\,kW[/tex]
Now, the real efficiency of the power cycle is:
[tex]\eta_{real} = \frac{14\,kW}{254\,kW} \times 100\,\%[/tex]
[tex]\eta_{real} = 5.512\,\%[/tex]
Besides, the maximum possible efficiency for any power cycle is based on Carnot's cycle efficiency, whose formula is:
[tex]\eta_{max} = \left(1-\frac{T_{L}}{T_{H}} \right)\times 100\,\%[/tex]
Where:
[tex]T_{L}[/tex] - Temperature of the cold reservoir, in K.
[tex]T_{H}[/tex] - Temperature of the hot reservoir, in K.
The maximum efficiency of the cycle is:
[tex]\eta_{max} = \left(1-\frac{279.15\,K}{298.15\,K} \right)\times 100\,\%[/tex]
[tex]\eta_{max} = 6.373\,\%[/tex]
The cycle is possible as [tex]\eta_{real} \leq \eta_{max}[/tex], observing the Second Law of Thermodynamics.