Answer:
The arc length of a sector:
[tex]A = \frac{9}{10} \pi[/tex]
Step-by-step explanation:
-The equation for finding the Arc length, would be:
[tex]Arc length = \frac{a}{360\textdegree} 2\pi r[/tex]
-Use the given radius and the central angle for the equation:
[tex]A = \frac{18\textdegree}{360\textdegree} 2\pi (9)[/tex]
-Then, solve the equation:
[tex]A = \frac{18\textdegree}{360\textdegree} \times 2\pi \times 9[/tex]
[tex]A = \frac{1}{20} \times 2\pi \times 9[/tex]
[tex]A = \frac{2}{20}\pi \times 9[/tex]
[tex]A = \frac{1}{10}\pi \times 9[/tex]
[tex]A = \frac{9}{10}\pi[/tex]
So, the arc length of a sector is [tex]\frac{9}{10} \pi[/tex] .