A sector with an area of 140 pie cm^2 has a radius of 20 cm.
r = 20 cm
A = 140 pie cm^2
What is the central angle measure of the sector in degrees?

A sector with an area of 140 pie cm2 has a radius of 20 cm r 20 cm A 140 pie cm2 What is the central angle measure of the sector in degrees class=

Respuesta :

Answer:

Central angle = 126°

Step-by-step explanation:

Area of the sector = 140π cm²

Radius of the given circle = 20 cm

Since area of the sector = [tex]\frac{\theta}{360}\times (\pi r^{2})[/tex]

[where θ is the central angle formed by the sector at the center]

                               140π = [tex]\frac{\theta}{360}(\pi)(20)^{2}[/tex]

                                    θ = [tex]\frac{(140\pi)\times 360}{400\pi }[/tex]

                                    θ = 126°

Therefore, central angle of the sector will be 126°.

Answer:

cm 32

Step-by-step explanation: