An element with a mass of 740 grams decays by 28.4% per minute. To the nearest minute, how long will it be until there are 30 grams of the element remaining?

Respuesta :

Answer:t=9.6 minutes

Step-by-step explanation:

Given

mass of element is [tex]A_o=740\ gm[/tex]

Decay rate [tex]r=28.4\%\ \text{per minute}[/tex]

and we know

Amount of exponential decay is given by

[tex]A=A_o[1-r]^t[/tex]

Where [tex]A_0=\text{Initial amount}[/tex]

[tex]\text{A=Accumulated amount}[/tex]

[tex]\text{r=rate}[/tex]

[tex]\text{t=time}[/tex]

Substituting values we get

[tex]\Rightarrow 30=740[1-0.284]^t[/tex]

[tex]\Rightarrow \dfrac{30}{740}=0.716^t[/tex]

[tex]\Rightarrow 0.0405=0.716^t[/tex]

taking log both sides we get

[tex]\Rightarrow\ \ln (0.0405)=t\times \ln (0.716)[/tex]

[tex]\Rightarrow t=\dfrac{\ln (0.0405)}{\ln (0.716)}[/tex]

[tex]\Rightarrow t=9.598\approx 9.6\ \text{minutes}[/tex]

Answer:

Delta math it’s 10

Step-by-step explanation: