Answer:
-The measure of [tex]\angle A[/tex] :
[tex]\angle A = 144\textdegree[/tex]
-The measure of [tex]\angle B[/tex] (if needed):
[tex]\angle B = 144\textdegree[/tex]
Step-by-step explanation:
-Set the measure of [tex]\angle A[/tex] on one side and set the measure of [tex]\angle B[/tex] on the other side and it will be written as:
[tex]10x + 24 = 6x + 72[/tex]
-Then, solve for [tex]x[/tex] :
[tex]10x + 24 = 6x + 72[/tex]
[tex]10x + 24 - 6x = 6x - 6x + 72[/tex]
[tex]4x + 24 = 72[/tex]
[tex]4x + 24 - 24 = 72 - 24[/tex]
[tex]4x = 48[/tex]
[tex]\frac{4x}{4} = \frac{48}{4}[/tex]
[tex]x = 12[/tex]
-After you have found the value of [tex]x[/tex], plug in both the measure of [tex]\angle A[/tex] and [tex]\angle B[/tex] in order to get the actual angle measurement of [tex]\angle A[/tex] and [tex]\angle B[/tex] :
Finding the measure of [tex]\angle A[/tex] :
[tex]\angle A = 10(12) + 24[/tex]
[tex]\angle A = 120 + 24[/tex]
[tex]\angle A = 144\textdegree[/tex]
Finding the measure of [tex]\angle B[/tex] :
[tex]\angle B = 6(12) + 72[/tex]
[tex]\angle B = 72 + 72[/tex]
[tex]\angle B = 144\textdegree[/tex]
-Notice: That reason why both [tex]\angle A[/tex] and [tex]\angle B[/tex] have the same measurements, its because they are Alternate Exterior Angles, based on the diagram shown.