Answer:
Step-by-step explanation:
Given data;
n = 17
[tex]\sum x =7692[/tex]
[tex]\sum x^2=3685124[/tex]
[tex]\sum y =7656\\\\ \sum xy=3662682[/tex]
Slope:
[tex]\hat B_1=\frac{n \sum xy - \sum x \sum y}{n \sum x^2 - ( \sum x)^2} \\\\=0.96994[/tex]
≅ 0.970
y - intercept :
[tex]\hat B_0 = \frac{\sum y}{n} - \hat B\frac{\sum x}{n} \\\\=11.48178[/tex]
≅ 11.482
a)
Equation :
[tex]\hat y = 11.482+0.970x[/tex]
b)
Predicted wright meter reading
[tex]\hat y = 11.48178+0.96994(563)\\\\=557.558[/tex]
c)Predicted wright meter reading
[tex]\hat y = 11.48178+0.96994(342)\\\\= 343.201[/tex]