Respuesta :
Answer:
Explanation:
Find the temperature at exit of compressor
[tex]T_2=300 \times 8^{\frac{1.667-1}{1.667} }\\=689.3k[/tex]
Find the work done by the compressor
[tex]\frac{W}{m} =c_p(T_2-T_1)\\\\=5.19(689.3-300)\\=2020.4kJ/kg[/tex]
Find the actual workdone by the compressor
[tex]\frac{W}{m} =n_c(\frac{W}{m} )\\\\=1 \times 2020.4kJ/kg[/tex]
Find the temperature at exit of the turbine
[tex]T_4=\frac{1800}{8^{\frac{1.667-1}{1.667} }} \\\\=787.3k[/tex]
Find the actual workdone by the turbine
[tex]1 \times 5.19 (1800-783.3)\\=5276.6kJ/kg[/tex]
Find the temperature of the regeneration
[tex]\epsilon = \frac{T_5-T_2}{T_4-T_2} \\\\0.75=\frac{T_5-689.3}{783.3-689.3} \\\\T_5=759.8k[/tex]
Find the heat supplied
[tex]Q_i_n=c_p(T_3-T_5)\\\\=5.19(1800-759.8)\\\\=5388.2kJ/kg[/tex]
Find the thermal efficiency
[tex]n_t_h=\frac{W_t-W_c}{Q_i_n} \\\\=\frac{5276.6-2020.4}{5388.2} \\\\n_t_h=60.4[/tex]
60.4%
Find the mass flow rate
[tex]m=\frac{W_net}{P} \\\\\frac{60 \times 10^3}{5276.6-2020.4} \\\\=18.42[/tex]
Find the actual workdone by the compressor
[tex]\frac{W_c}{m} =\frac{(\frac{W}{m} )}{n_c} \\\\=\frac{2020.4}{0.8} \\\\=2525.5kg[/tex]
Find the actual workdone by the turbine
[tex]\frac{W_t}{m} =n_t(\frac{W}{m} )\\\\=0.8 \times5.19(1800-783.3)\\\\=4221.2kJ/kg[/tex]
Find the temperature of the compressor exit
[tex]\frac{W_t}{m} =c_p(T_2_a-T_1)\\2525.5=5.18(T_2_a-300)\\T_2_a=787.5k[/tex]
Find the temperature at the turbine exit
[tex]4221.2=5.18(1800-T_4_a)\\\\T_4_a=985k[/tex]
Find the temperature of regeneration
[tex]\epsilon =\frac{T_5-T_2}{T_4-T_2}\\\\0.75=\frac{T_5-787.5}{985-787.5}\\\\T_5=935.5k[/tex]
Answer:
a) 60.4%; 18.42 kg/s
b) 37.8% ; 35.4 kg/s
Explanation:
a) at an isentropic efficiency of 100%.
Let's first find the exit temperature of the compressor T2, using the formula:
[tex](r_p) ^k^-^1^/^k = \frac{T_2}{T_1}[/tex]
Solving for T2, we have:
[tex] T_2 = 300 * (8)^1^.^6^6^7^-^1^/^1^.^6^6^7 = 689.3 K [/tex]
Let's now find the work dine by the compressor.
[tex] \frac{W_c}{m} = c_p(T_2 - T_1) [/tex]
[tex] \frac{W_c}{m} = 5.19(689.3 - 300) = 2020.4 KJ/kg[/tex]
The actual work done by the compressor =
[tex] W_c = 1 * 2020.4 = 2020.4 KJ/kg [/tex]
Let's find the temperature at the exit of the turbine, T4
[tex](r_p) ^k^-^1^/^k = \frac{T_3}{T_4}[/tex]
Solving for T4, we have:
[tex]T_4 = \frac{1800}{(8)^1^.^6^6^7^-^1^/^1^.^6^6^7} = 783.3 K[/tex]
Let's find the work done by the turbine.
[tex]\frac{W_t}{m} = c_p(T_3 - T_4)[/tex]
[tex]\frac{W_t}{m} = 5.19(1800 - 783.3) = 5276.6 KJ/kg[/tex]
The actual work done by the turbine:
= 1 * 5276.6 = 5276.6 KJ/kg
Let's find the regeneration temperature, using the formula:
[tex] e = \frac{T_r - T_2}{T_4 - T_2}[/tex]
Substituting figures, we have:
[tex] 0.75 = \frac{T_r - 689.3}{783.3 - 689.3} [/tex]
[tex] T_r = [0.75(783.3 - 689.3)] + 689.3 = 759.8 [/tex]
Let's calculate the heat supplied.
[tex]Q = c_p(T_3 - T_r)[/tex]
[tex] Q = 5.19(1800 - 759.8) [/tex]
Q = 5388.2 kJ/kg
For thermal efficiency, we have:
[tex] n = \frac{W_t - W_c}{Q} [/tex]
Substituting figures, we have:
[tex] n = \frac{5276.6 - 2020.4}{5388.2} = 0.604 [/tex]
0.604 * 100 = 60.4%
For mass flow rate:
Let's use the formula:
[tex] m = \frac{W_n_e_t}{P} [/tex]
Wnet = 60MW = 60*1000
[tex] m = \frac{60*10^3}{5276.6 - 2020.4} = 18.42 [/tex]
b) at an isentropic efficiency of 80%.
Let's now find the work done by the compressor.
[tex] \frac{W_c}{m} = c_p(T_2 - T_1) [/tex]
[tex] \frac{W_c}{m} = 5.19(689.3 - 300) = 2020.4 KJ/kg[/tex]
The actual work done by the compressor =
[tex] W_c = \frac{2020.4}{0.8}= 2525.5 KJ/kg [/tex]
Let's find the work done by the turbine.
[tex] \frac{W_t}{m} = c_p(T_3 - T_4) [/tex]
[tex] \frac{W_t}{m} = 5.19(1800 - 787.5) = 5276.6 KJ/kg[/tex]
The actual work done by the turbine:
= 0.8 * 5276.6 = 4221.2 KJ/kg
Let's find the exit temperature of the compressor T2, using the formula:
[tex]\frac{W_c}{m} = c_p(T_2 - T_1) [/tex]
[tex] 2525.5 = 5.19(T_2 - 300) [/tex]
Solving for T2, we have:
[tex] T_2 = \frac{2525.5 + 300}{5.19} = 787.5 [/tex]
Let's find the temperature at the exit of the turbine, T4
[tex] \frac{W_t}{m} = c_p(T_3 - T_4) [/tex]
[tex] 4221.2 = 5.19(1800 - T_4) [/tex]
Solving for T4 we have:
[tex] T_4 = 958 K[/tex]
Let's find the regeneration temperature, using the formula:
[tex] e = \frac{T_r - T_2}{T_4 - T_2}[/tex]
Substituting figures, we have:
[tex] 0.75 = \frac{T_r - 787.5}{985 - 787.5} [/tex]
[tex] T_r = [0.75(958 - 787.5)] + 787.5 = 935.5 K [/tex]
Let's calculate the heat supplied.
[tex]Q = c_p(T_3 - T_r)[/tex]
[tex] Q = 5.19(1800 - 935.5) [/tex]
Q = 4486.2 kJ/kg
For thermal efficiency, we have:
[tex] n = \frac{W_t - W_c}{Q} [/tex]
Substituting figures, we have:
[tex] n = \frac{4221.2 - 2525.2}{4486.2} = 0.378 [/tex]
0.378 * 100 = 37.8%
For mass flow rate:
Let's use the formula:
[tex] m = \frac{W_n_e_t}{P} [/tex]
Wnet = 60MW = 60*1000
[tex] m = \frac{60*10^3}{4221.2 - 2525.2} = 35.4 kg/s [/tex]