PLS HELP!! AND HURRY!! Find an expression for the nth term ( tn ) in each of the following sequences:
1, 4, 7, ...

Respuesta :

If the pattern continues, so that each term is separated by a distance of 3, then the sequence is given by the recursive rule

[tex]\begin{cases}a_1=1\\a_n=a_{n-1}+3&\text{for }n>1\end{cases}[/tex]

From this definition, we can write [tex]a_n[/tex] in terms of [tex]a_1[/tex]:

[tex]a_2=a_1+3[/tex]

[tex]a_3=a_2+3=(a_1+3)+3=a_1+2\cdot3[/tex]

[tex]a_4=a_3+3=(a_1+2\cdot3)+3=a_1+3\cdot3[/tex]

[tex]a_5=a_4+3=(a_1+3\cdot3)+3=a_1+4\cdot3[/tex]

and so on, up to

[tex]a_n=a_1+(n-1)\cdot3[/tex]

(notice how the subscript on a and coefficient on 3 add up to n)

or

[tex]a_n=1+3(n-1)=3n-2[/tex]

Answer:

n=1/2 of n x 8 divided by 4 -2

Step-by-step explanation: