Answer:
In this reaction, [tex]6\; \rm mol[/tex] of [tex]\rm N_2[/tex] will react with [tex]18\; \rm mol[/tex] of [tex]\rm H_2[/tex].
Explanation:
In the balanced equation for this reaction, the ratio between the coefficient of [tex]\rm H_2[/tex] and [tex]\rm N_2[/tex] is [tex]3 : 1[/tex]. That is: [tex]n(\mathrm{H_2}) : n(\mathrm{N_2}) = 3:1[/tex]. That's the same as saying that for every one mole of [tex]\rm N_2[/tex] consumed, three moles of [tex]\rm H_2[/tex] will be consumed.
Rewrite this ratio as a fraction:
[tex]\displaystyle \frac{n(\mathrm{H_2})}{n(\mathrm{N_2})} = \frac{3}{1}[/tex].
Take the reciprocal of both sides to obtain:
[tex]\displaystyle \frac{n(\mathrm{N_2})}{n(\mathrm{H_2})} = \frac{1}{3}[/tex].
It is given that [tex]18\; \rm mol[/tex] of [tex]\rm H_2[/tex] was consumed; in other words, [tex]n(\mathrm{H_2}) = 18\; \rm mol[/tex]. The question is asking for [tex]n(\mathrm{N_2})[/tex], the number of moles of [tex]\rm N_2[/tex] required. Apply this ratio:
[tex]\begin{aligned}n(\mathrm{N_2}) &= n(\mathrm{H_2}) \cdot \frac{n(\mathrm{N_2})}{n(\mathrm{H_2})}\\ &= 18\; \rm mol \times \frac{1}{3} = 6\; \rm mol\end{aligned}[/tex].
Hence the conclusion: in this reaction, it will take (at least) [tex]6\; \rm mol[/tex] of [tex]\rm N_2[/tex] to react with [tex]18\; \rm mol[/tex] of [tex]\rm H_2[/tex].