Answer:
a) [tex] p = 0.5[/tex]
b) [tex] \hat p= \frac{X}{n}= \frac{154}{329}= 0.468[/tex]
c) [tex]0.468 - 1.64 \sqrt{\frac{0.468(1-0.468)}{329}}=0.423[/tex]
[tex]0.468 + 1.64 \sqrt{\frac{0.468(1-0.468)}{329}}=0.513[/tex]
And the 90% confidence interval for the true proportion is given by (0.527;0.593).
Step-by-step explanation:
Part a
For this case we don't have any prior info given so then the probability assumed for this case is:
[tex] p = 0.5[/tex]
Part b
For this case the proportion of success is given by:
[tex] \hat p= \frac{X}{n}= \frac{154}{329}= 0.468[/tex]
Part c
The confidence interval for the true proportion would be given by this formula
[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
For the 90% confidence interval the value of and , and the critical value would be given by:
[tex]z_{\alpha/2}=1.64[/tex]
The confidence interval is given by:
[tex]0.468 - 1.64 \sqrt{\frac{0.468(1-0.468)}{329}}=0.423[/tex]
[tex]0.468 + 1.64 \sqrt{\frac{0.468(1-0.468)}{329}}=0.513[/tex]
And the 90% confidence interval for the true proportion is given by (0.527;0.593).