Answer:
2.6 m
Step-by-step explanation:
In the attached diagram
Consider Triangle ABC
[tex]\sin36^\circ =\dfrac{|BC|}{7.8} \\|BC|=7.8*\sin36^\circ\\|BC|=4.5847$ m[/tex]
Our goal is to determine the distance of Jen (at point A) to Holly (at Point D).
In Triangle ABC
[tex]\cos 36^\circ =\dfrac{|AC|}{7.8} \\|AC|=7.8*\cos36^\circ\\|AC|=6.3103$ m[/tex]
In Triangle BDC
Applying Pythagoras Theorem
[tex]|BD|^2=|BC|^2+|CD|^2\\5.9^2=4.5847^2+|CD|^2\\|CD|^2=5.9^2-4.5847^2\\|CD|^2=13.7905\\|CD|=\sqrt{13.7905}=3.7136$ m[/tex]
Now, |AC|=|AD|+|DC|
6.3103=|AD|+3.7136
|AD|=6.3103-3.7136
|AD|=2.5967
|AD|=2.6m (correct to the nearest tenth of a metre)
The distance of Jen from Holly is 2.6m.