Answer:
The length of the arc:
[tex]A = \frac{8}{5} \pi[/tex]
Step-by-step explanation:
To find the length of the arc< you need this equation:
[tex]Arclength = \frac{a}{360\textdegree} 2\pi r[/tex]
-Use the given radius [tex]6[/tex] and the central angle [tex]48\textdegree[/tex] for the equation:
[tex]A = \frac{48\textdegree}{360\textdegree} 2\pi (6)[/tex]
Then, solve the equation:
[tex]A = \frac{48\textdegree}{360\textdegree} 2\pi (6)[/tex]
[tex]A = \frac{2}{15} \times 2\pi \times 6[/tex]
[tex]A = \frac{4}{15} \pi \times 6[/tex]
[tex]A = \frac{24}{15} \pi[/tex]
[tex]A = \frac{8}{5} \pi[/tex]
So, the length of the arc is [tex]\frac{8}{5} \pi[/tex] .