If cde is a straight angle, de bisects gdh, m gde = (8x-1), m edh = (6x-15), and m cdf= 43, find each measure.

If cde is a straight angle de bisects gdh m gde 8x1 m edh 6x15 and m cdf 43 find each measure class=

Respuesta :

Answer:

x = 7°

<GDH = 112°

<FDH = 192°

<FDE = 135°

Step-by-step explanation:

If DE bisects <GDH this means that <GDE = <EDH

Given <GDE = (8x+1)° and <EDH = (6x+15)° then;

8x+1 = 6x+15

8x-6x = 15-1

2x = 14

x = 7°

Since <GDH = <GDE + <EDH

<GDH = 8x-1+6x+15

<GDH = 14x+14

<GDH = 14(7)+14

<GDH = 98+14

<GDH = 112°

For <FDH,

Note that sum of angle on a straight line is 180°

<FDH = <FDG + <GDE + <EDH

<FDH = <FDG + <GDH

<FDG = 180-(43+8x+1)

<FDG = 180-44-8x = 136-8x

<FDH = 136-8x+112

<FDH = 248-8x

<FDH = 248-8(7)

<FDH = 248-56

<FDH = 192°

For <FDE;

<FDE = <FDG + <GDE

<FDE = 136-8x+8x-1

<FDE = 135°