Answer:
[tex]\dfrac{\sqrt[3]{95^2}}{17\cdot95^4}=\dfrac{\sqrt[3]{9\,025}}{1\,384\,660\,625}[/tex]
Step-by-step explanation:
The applicable rules of exponents are ...
(ab)^c = (a^c)(b^c)
(a^b)/(a^c) = a^(b-c)
__
[tex]\dfrac{190^3}{68^2}\times\dfrac{34}{95^{\frac{19}{3}}}=\dfrac{(2\cdot 95)^3}{(2\cdot 34)^2}\cdot\dfrac{34}{95^6\cdot 95^{\frac{1}{3}}}=2^{3-2}95^{3-6-\frac{1}{3}}34^{1-2}\\\\=2\cdot 95^{-3\frac{1}{3}}\cdot 34^{-1}=2\cdot 95^{-4+\frac{2}{3}}\cdot 34^{-1}\\\\=\dfrac{2\sqrt[3]{95^2}}{95^4\cdot 34}=\dfrac{\sqrt[3]{95^2}}{17\cdot95^4}\\\\=\dfrac{\sqrt[3]{9\,025}}{1\,384\,660\,625}[/tex]