contestada


[tex]y = \frac{(190)^{3} {68^{2} } \times ( \frac{34}{95}^{ \frac{19}{3} } [/tex]
plz help me solve this question. ​

Respuesta :

Answer:

  [tex]\dfrac{\sqrt[3]{95^2}}{17\cdot95^4}=\dfrac{\sqrt[3]{9\,025}}{1\,384\,660\,625}[/tex]

Step-by-step explanation:

The applicable rules of exponents are ...

  (ab)^c = (a^c)(b^c)

  (a^b)/(a^c) = a^(b-c)

__

  [tex]\dfrac{190^3}{68^2}\times\dfrac{34}{95^{\frac{19}{3}}}=\dfrac{(2\cdot 95)^3}{(2\cdot 34)^2}\cdot\dfrac{34}{95^6\cdot 95^{\frac{1}{3}}}=2^{3-2}95^{3-6-\frac{1}{3}}34^{1-2}\\\\=2\cdot 95^{-3\frac{1}{3}}\cdot 34^{-1}=2\cdot 95^{-4+\frac{2}{3}}\cdot 34^{-1}\\\\=\dfrac{2\sqrt[3]{95^2}}{95^4\cdot 34}=\dfrac{\sqrt[3]{95^2}}{17\cdot95^4}\\\\=\dfrac{\sqrt[3]{9\,025}}{1\,384\,660\,625}[/tex]