Answer:
12th term: [tex]a_{12}=5\times 2^{12-1}[/tex]
nth term: [tex]a_n=5\times 2^{n-1}[/tex]
2nd term: [tex]a_{2}=5\times 2^{2-1}[/tex]
4th term: [tex]a_{4}=5\times 2^{4-1}[/tex]
(n-1)th term: [tex]a_{n-1}=5\times 2^{n-2}[/tex]
6th term: [tex]a_{6}=5\times 2^{6-1}[/tex]
Step-by-step explanation:
The first term of GP, a = 5
Common ratio, r = 2
Formula for [tex]n^{th}[/tex] term of a GP, [tex]a_n=ar^{n-1}[/tex].
Putting the values of a and r. So, [tex]n^{th}[/tex] term is:
[tex]a_n=5\times 2^{n-1} ...... (1)[/tex]
[tex]12^{th}[/tex] term is:
Put n = 12 in (1):
[tex]a_{12}=5\times 2^{12-1}[/tex]
2nd term is : (Put n = 2 in (1))
[tex]a_{2}=5\times 2^{2-1}[/tex]
4th term is: (Put n = 4 in (1))
[tex]a_{4}=5\times 2^{4-1}[/tex]
(n-1)th term is, put value of n as (n-1) in equation 1:
[tex]a_{n-1}=5\times 2^{n-1-1}\\a_{n-1}=5\times 2^{n-2}[/tex]
6th term is: (Put n = 6 in (1))
[tex]a_{6}=5\times 2^{6-1}[/tex]