Respuesta :
Answer:
[tex]m_{PbI_2}=18.2gPbI_2[/tex]
Explanation:
Hello,
In this case, we write the reaction again:
[tex]Pb(NO_3)_2(aq) + 2 KI(aq)\rightarrow PbI_2(s) + 2 KNO_3(aq)[/tex]
In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:
[tex]n_{Pb(NO_3)_2}=\frac{0.14gPb(NO_3)_2}{1g\ sln}*\frac{1molPb(NO_3)_2}{331.2gPb(NO_3)_2} *\frac{1.134g\ sln}{1mL\ sln} *96.7mL\ sln\\\\n_{Pb(NO_3)_2}=0.04635molPb(NO_3)_2\\\\n_{KI}=\frac{0.12gKI}{1g\ sln}*\frac{1molKI}{166.0gKI} *\frac{1.093g\ sln}{1mL\ sln} *99.8mL\ sln\\\\n_{KI}=0.07885molKI[/tex]
Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:
[tex]0.04635molPb(NO_3)_2*\frac{2molKI}{1molPb(NO_3)_2} =0.0927molKI[/tex]
But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:
[tex]m_{PbI_2}=0.07885molKI*\frac{1molPbI_2}{2molKI} *\frac{461.01gPbI_2}{1molPbI_2} \\\\m_{PbI_2}=18.2gPbI_2[/tex]
Best regards.
Answer:
Mass PbI2 = 18.19 grams
Explanation:
Step 1: Data given
Volume solution = 99.8 mL = 0.0998 L
mass % KI = 12.0 %
Density = 1.093 g/mL
Volume of the other solution = 96.7 mL = 0.967 L
mass % of Pb(NO3)2 = 14.0 %
Density = 1.134 g/mL
Step 2: The balanced equation
Pb(NO3)2(aq) + 2 KI(aq) ⇆ PbI2(s) + 2 KNO3(aq)
Step 3: Calculate mass
Mass = density * volume
Mass KI solution = 1.093 g/mL * 99.8 mL
Mass KI solution = 109.08 grams
Mass KI solution = 109.08 grams *0.12 = 13.09 grams
Mass of Pb(NO3)2 solution = 1.134 g/mL * 96.7 mL
Mass of Pb(NO3)2 solution = 109.66 grams
Mass of Pb(NO3)2 solution = 109.66 grams * 0.14 = 15.35 grams
Step 4: Calculate moles
Moles = mass / molar mass
Moles KI = 13.09 grams / 166.0 g/mol
Moles KI = 0.0789 moles
Moles Pb(NO3)2 = 15.35 grams / 331.2 g/mol
Moles Pb(NO3)2 = 0.0463 moles
Step 5: Calculate the limiting reactant
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
Ki is the limiting reactant. It will completely be consumed ( 0.0789 moles). Pb(NO3)2 is in excess. There will react 0.0789/2 = 0.03945 moles. There will remain 0.0463 - 0.03945 = 0.00685 moles
Step 6: Calculate moles PbI2
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
For 0.0789 moles KI we'll have 0.0789/2 = 0.03945 moles PbI2
Step 7: Calculate mass of PbI2
Mass PbI2 = moles PbI2 * molar mass PbI2
Mass PbI2 = 0.03945 moles * 461.01 g/mol
Mass PbI2 = 18.19 grams