Help needed asap in 10 mins please

Answer:
C
Step-by-step explanation:
You can use elimination by plugging in choices, by the time I get to C you know that 2/1+3/3=3 and that 3/1+6/3=5
Answer:
The answer is C.
Step-by-step explanation:
First you have to solve this simultaneous equation by substitution :
[tex] \frac{2}{x} + \frac{3}{y} = 3 - - - (1)[/tex]
[tex] \frac{3}{x} + \frac{6}{y} = 5 - - - (2)[/tex]
Next you can make any variable as a subject. So I will choose to make x the subject in (1) :
[tex] \frac{2}{x} + \frac{3}{y} = 3[/tex]
[tex] \frac{2}{x} = 3 - \frac{3}{y} [/tex]
[tex] \frac{2}{x} = \frac{3y - 3}{y} [/tex]
[tex]x(3y - 3) = 2y[/tex]
[tex]x = \frac{2y}{3y - 3} - - - (3)[/tex]
Lastly, you can solve the equations :
[tex](3)→(2)[/tex]
[tex](3 \div \frac{2y}{3y - 3}) + \frac{6}{y} = 5[/tex]
[tex](3 \times \frac{3y - 3}{2y}) + \frac{6}{y} = 5[/tex]
[tex] \frac{9y - 9}{2y} - \frac{6}{y} = 5[/tex]
[tex] \frac{9y - 9 + 6(2)}{2y} = 5[/tex]
[tex] \frac{9y - 9 + 12}{2y} = 5[/tex]
[tex] \frac{9y + 3}{2y} = 5[/tex]
[tex]9y + 3 = 5(2y)[/tex]
[tex]9y + 3 = 10y[/tex]
[tex]y = 3[/tex]
[tex]substitute \: y = 3 \: into \: (1)[/tex]
[tex]x = \frac{2y}{3y - 3} [/tex]
[tex]x = \frac{2(3)}{3(3) - 3} [/tex]
[tex]x = \frac{6}{9 - 3} [/tex]
[tex]x = \frac{6}{3} [/tex]
[tex]x = 2[/tex]