Answer:
a) sec (θ -π/2) = co secθ
b) [tex]sin(\frac{\pi }{18} ) cos (\frac{\pi }{9})+ cos(\frac{\pi }{18} ) sin (\frac{\pi }{9} )=\frac{1}{2}[/tex]
Step-by-step explanation:
a)
Given co sec θ = -2.06
sec (θ -π/2) = sec(π/2 -θ) = co secθ
b)
we will use formula
sin A cos B + Cos A sin B = sin(A+B)
Given [tex]sin(\frac{\pi }{18} ) cos (\frac{\pi }{9})+ cos(\frac{\pi }{18} ) sin (\frac{\pi }{9} )[/tex]
= [tex]Sin(\frac{\pi }{18} +\frac{\pi }{9} )[/tex]
= [tex]sin(\frac{\pi+2\pi }{18} ) = sin(\frac{3\pi }{18})[/tex]
= [tex]sin(\frac{\pi }{6})[/tex]
= [tex]\frac{1}{2}[/tex]