Answer:
[tex] ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}[/tex]
The critical value can be founded in the normal standard distribution table using the value of [tex]\alpha/2 =0.025[/tex] and we got [tex] z_{\alpha/2}=1.96[/tex]. Replacing the info given we got:
[tex] ME = 1.96 \frac{0.73}{\sqrt{60}}= 0.185[/tex]
Step-by-step explanation:
For this case we have the following info given:
[tex] \sigma = 0.73[/tex] represent the population deviation
[tex] \bar X = 84.5[/tex] represent the sample mean
[tex] n =60[/tex] represent the sample size
And we want to find the margin of error for a confidence level of 95%. So then the significance level would be [tex]\alpha=1-0.95 = 0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. The margin of error is given by:
[tex] ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}[/tex]
The critical value can be founded in the normal standard distribution table using the value of [tex]\alpha/2 =0.025[/tex] and we got [tex] z_{\alpha/2}=1.96[/tex]. Replacing the info given we got:
[tex] ME = 1.96 \frac{0.73}{\sqrt{60}}= 0.185[/tex]