Respuesta :
Answer:
1. [tex]V_{CO_2}=405.85L[/tex]
2. [tex]m_{PbCl_2}=51.6gPbCl_2[/tex]
Explanation:
Hello,
1) In this case, the reaction is:
[tex]CaCO_3\rightarrow CaO+CO_2[/tex]
Thus, since 1.595 kg of calcium carbonate, whose molar mass is 100 g/mol, is decomposed, the following moles of carbon dioxide are produced:
[tex]n_{CO_2}=1.595kgCaCO_3*\frac{1000gCaCO_3}{1kgCaCO_3}*\frac{1molCaCO_3}{100gCaCO_3} *\frac{1molCO_2}{1molCaCO_3} \\\\n_{CO_2}=15.95molCO_2[/tex]
Then, by using the ideal gas equation we can compute the volume of carbon dioxide:
[tex]V_{CO_2}=\frac{n_{CO_2}RT}{P}=\frac{15.95molCO_2*0.082\frac{atm*L}{mol*K}*(32+273)K}{747mmHg*\frac{1atm}{760mmHg} } \\\\V_{CO_2}=405.85L[/tex]
2) In this case, the reaction is:
[tex]2KCl(aq)+Pb(NO_3)_2(aq)\rightarrow PbCl_2(s)+2KNO_3(aq)[/tex]
Thus, lead (II) chloride is the precipitate. In such a way, we first identify the limiting reactant by firstly computing the moles of potassium chloride and lead (II) nitrate with the volumes and the molarities:
[tex]n_{KCl}=2.12mol/L*0.175L=0.371molKCl\\n_{Pb(NO_3)_2}=5.97mol/L*0.095L=0.567molPb(NO_3)_2[/tex]
Next, we compute the moles of potassium chloride consumed by 0.567 moles of lead (II) nitrate by using their 2:1 molar ratio:
[tex]n_{KCl}^{consumed\ by\ Pb(NO_3)_2}=0.567molPb(NO_3)_2*\frac{2molKCl}{1molPb(NO_3)_2}=1.134molKCl[/tex]
Therefore, as just 0.371 moles of potassium chloride are available we say it is the limiting reactant, for that reason, the grams of lead (II) chloride, whose molar mass is 278.1 g/mol, precipitate finally result:
[tex]m_{PbCl_2}=0.371molKCl*\frac{1molPbCl_2}{2molKCl}*\frac{278.1gPbCl_2}{1molPbCl_2} \\\\m_{PbCl_2}=51.6gPbCl_2[/tex]
Best regards.