Answer:
3.74% probability that her baby has T18
Step-by-step explanation:
Bayes Theorem:
Two events, A and B.
[tex]P(B|A) = \frac{P(B)*P(A|B)}{P(A)}[/tex]
In which P(B|A) is the probability of B happening when A has happened and P(A|B) is the probability of A happening when B has happened.
In this question:
Event A: Positive test.
Event B: The baby having T18.
T18 occurs in only 1 in 2500 pregnancies in the U.S.
This means that [tex]P(B) = \frac{1}{2500} = 0.0004[/tex]
The probability of a positive test result for a baby with T18 is 0.97.
This means that [tex]P(A|B) = 0.97[/tex]
The overall probability of a positive test result is 0.010384.
This means that [tex]P(A) = 0.010384[/tex]
What is the probability that her baby has T18
[tex]P(B|A) = \frac{0.0004*0.97}{0.010384} = 0.0374[/tex]
3.74% probability that her baby has T18