Answer:
4.6.
Step-by-step explanation:
The rocket hits the ground when h(t) = 0. So
[tex]-16t^{2} + 72t + 7 = 0[/tex]
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]\bigtriangleup = b^{2} - 4ac[/tex]
In this question:
[tex]-16t^{2} + 72t + 7 = 0[/tex]
So
[tex]a = -16, b = 72, c = 7[/tex]
Then
[tex]\bigtriangleup = 72^{2} - 4*(-16)*7 = 5632[/tex]
[tex]t_{1} = \frac{-72 + \sqrt{5632}}{2*(-16)} = -0.1[/tex]
[tex]t_{2} = \frac{-72 - \sqrt{5632}}{2*(-16)} = 4.6[/tex]
Time is a positive measure, so the answer is 4.6.