To measure the height of the cloud cover at an airport, a worker shines a spotlight upward at an angle 75° from the horizontal. an observer at a distance d = 560 m away measures the angle of elevation to the spot of light to be 45°. find the height h of the cloud cover,

Respuesta :

Answer:

The height of the cloud cover is 441.66 meters

Step-by-step explanation:

Distance = 560 m

The height of the cloud cover = h meters

According to the diagram, the worker stands at point R,

Let RT = x

tan 45⁰ = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{h}{x}[/tex]

therefore, 1 =  [tex]\frac{h}{x}[/tex], h = x

Then tan 75⁰ = [tex]\frac{h}{560-x}[/tex], substituting x = h, we have

3.732 = [tex]\frac{h}{560-h}[/tex]

3.732(560 - h) =  h

3.732 × 560 = 3.732h + h

2089.92 = 4.732h

h = 441.66 m

Ver imagen funmilaciousfunmie78

The height of the cloud cover is 228.62 meters

The given parameters are:

[tex]\mathbf{\alpha = 75^o}[/tex]

[tex]\mathbf{\theta = 45^o}[/tex]

[tex]\mathbf{d = 560m}[/tex]

See attachment for the image of the cloud cover.

From the attached image, we have the following sine ratios:

[tex]\mathbf{sin(75) = \frac hx}[/tex]

[tex]\mathbf{sin(45) = \frac h{560 - x}}[/tex]

Make h the subject in both equations

[tex]\mathbf{ h = xsin(75)}[/tex]

[tex]\mathbf{ h = (560 - x) sin(45)}[/tex]

So, we have:

[tex]\mathbf{ xsin(75) = (560 - x) sin(45)}[/tex]

Open brackets

[tex]\mathbf{ xsin(75) = 560sin(45) - x sin(45)}[/tex]

Collect like terms

[tex]\mathbf{ xsin(75) + x sin(45)= 560sin(45) }[/tex]

Evaluate sine 45 and 75

[tex]\mathbf{ 0.9659x + 0.7071x= 560 \times 0.7071}[/tex]

[tex]\mathbf{ 1.673x= 395.976}[/tex]

Divide both sides by 1.673

[tex]\mathbf{ x= 236.69}[/tex]

Recall that:

[tex]\mathbf{ h = xsin(75)}[/tex]

So, we have:

[tex]\mathbf{h = 236.69 \times 0.9659}[/tex]

[tex]\mathbf{h = 228.618871}[/tex]

Approximate

[tex]\mathbf{h = 228.62}[/tex]

Hence, the height of the cloud cover is 228.62 meters

Read more at:

https://brainly.com/question/16979479

Ver imagen MrRoyal
ACCESS MORE
EDU ACCESS
Universidad de Mexico